Fabian Lehmann

Fabian Lehmann

Promotionsstudent

Humboldt-Universität zu Berlin

Über mich

Ich bin Fabian Lehmann und promoviere in Informatik am Lehrstuhl für Wissensmanagement in der Bioinformatik an der Humboldt-Universität zu Berlin. Ich werde über FONDA, ein Sonderforschungsbereich der Deutschen Forschungsgemeinschaft (DFG), gefördert.

Während meines Bachelorstudiums habe ich meine Faszination für komplexe, verteilte Systeme entdeckt. Ich begeistere mich dafür, die Limits solcher Systeme auszutesten und zu überwinden. In meiner Promotion fokussiere ich mich auf die Optimierung von Workflow Systemen zur Analyse von riesigen Datenmengen. Insbesondere konzentriere ich mich hierbei auf den Aspekt des Schedulings. Hierfür arbeite ich eng mit dem Earth Observation Lab der Humboldt-Universität zu Berlin zusammen, um die Anforderungen der Praxis zu verstehen.

Interessen
  • Verteilte Systeme
  • Wissenschaftliche Workflows
  • Workflow Scheduling
Bildung
  • Master Wirtschaftsinformatik, 2020

    Abschlussarbeit: Design and Implementation of a Processing Pipeline for High Resolution Blood Pressure Sensor Data

    Technische Universität Berlin

  • Bachelor Wirtschaftsinformatik, 2019

    Abschlussarbeit: Performance-Benchmarking in Continuous-Integration-Prozessen

    Technische Universität Berlin

  • Abitur, 2015

    Hannah-Arendt-Gymnasium (Berlin)

Erfahrungen

 
 
 
 
 
Wissensmanagement in der Bioinformatik (Humboldt-Universität zu Berlin)
Promotionsstudent (Informatik)
Nov. 2020 – Aktuell Berlin, Deutschland
In meinem Promotionsvorhaben fokussiere ich mich auf die Optimierung der Ausführung von großen wissenschaftlichen Workflows, die Hunderte Gigabytes an Daten verarbeiten.
 
 
 
 
 
DAI-Labor (Technische Universität Berlin)
Studentische Hilfskraft
Mai 2018 – Okt. 2020 Berlin, Deutschland
In meinem Studentenjob habe ich im Rahmen von DIGINET-PS Zeitreihenanalysen durchgeführt. Unter anderem haben wir die Auslastung der Parkplätze auf der Straße des 17. Juni vorhergesagt.
 
 
 
 
 
Universität Oxford
GeoTripNet - Fallstudie
Okt. 2019 – März 2020 Oxford, England, Großbritannien
Im Rahmen der Fallstudie haben wir die Bewertungen aller Restaurants in Berlin auf Google Maps gecrawlt. Anschließend haben wir die Beziehungen zwischen verschiedenen Restaurants analysiert, um die Gentrifizierung in Berliner Bezirken zu untersuchen. Ein Problem bestand darin, die große Datenmenge in Echtzeit zu verarbeiten, zu analysieren und zu visualisieren.
 
 
 
 
 
Einstein Center Digital Future
Fog Computing Projekt
Apr. 2019 – Sept. 2020 Berlin, Deutschland
In diesem Projekt haben wir die Fahrradfahrten von SimRa analysiert. Dafür haben wir eine verteilte Analyse Pipeline aufgesetzt und die Daten anschließend in einer interaktiven Web-App dargestellt. Anschließend konnten wir Gefahrenstellen für die Berliner Fahrradfahrer erkennen.
 
 
 
 
 
Conrad Connect
Anwendungssysteme Projekt
Okt. 2017 – März 2018 Berlin, Deutschland
Für Conrad Connect haben wir Hunderte Gigabytes an IoT Daten ausgewertet. Außerdem habe ich Sicherheitsmängel auf ihrer Website gefunden.
 
 
 
 
 
Reflect IT Solutions GmbH
Semesterferien-Job
März 2016 – Apr. 2016 & Sep 2016 – Oct 2016 Berlin, Deutschland
In meinen Semesterferien habe ich geholfen, das Backend für eine Software zur Unterstützung der Bauüberwachung zu entwickeln.
 
 
 
 
 
SPP Schüttauf und Persike Planungsgesellshaft mbH
Arbeit zwischen Abitur und Studium
Mai 2015 – Sept. 2015 Berlin, Deutschland
Bevor ich mit meinem Bachelorstudium begonnen habe, habe ich einige Monate die Bauüberwachung der Sanierung eines 18-Geschossers unterstützt.

IT-Kenntnisse

(Ein kleiner Ausschnitt)

JAVA
Python
Docker
Kubernetes
Spring Boot
Latex
SQL
React
JavaScript
Nextflow
Haskell
Excel

Software

Benchmark Evaluator

Benchmark Evaluator

Der Benchmark Evaluator ist ein Plugin für den Jenkins Automatisierungsserver zum Laden und Auswerten von Benchmarkergebnissen.

Publikationen

Reshi: Recommending Resources for Scientific Workflow Tasks on Heterogeneous Infrastructures

Scientific workflows typically comprise a multitude of different processing steps which often are executed in parallel on different partitions of the input data. These executions, in turn, must be scheduled on the compute nodes of the computational infrastructure at hand. This assignment is complicated by the facts that (a) tasks typically have highly heterogeneous resource requirements and (b) in many infrastructures, compute nodes offer highly heterogeneous resources. In consequence, predictions of the runtime of a given task on a given node, as required by many scheduling algorithms, are often rather imprecise, which can lead to sub-optimal scheduling decisions. We propose Reshi, a method for recommending task-node assignments during workflow execution that can cope with heterogeneous tasks and heterogeneous nodes. Reshi approaches the problem as a regression task, where task-node pairs are modeled as feature vectors over the results of dedicated micro benchmarks and past task executions. Based on these features, Reshi trains a regression tree model to rank and recommend nodes for each ready-to-run task, which can be used as input to a scheduler. For our evaluation, we benchmarked 27 AWS machine types using three representative workflows. We compare Reshi’s recommendations with three state-of-the-art schedulers. Our evaluation shows that Reshi outperforms HEFT by a mean makespan reduction of 7.18% and 18.01% assuming a mean task runtime prediction error of 15%.

Lotaru: Locally Estimating Runtimes of Scientific Workflow Tasks in Heterogeneous Clusters

Many scientific workflow scheduling algorithms need to be informed about task runtimes a-priori to conduct efficient scheduling. In heterogeneous cluster infrastructures, this problem becomes aggravated because these runtimes are required for each task-node pair. Using historical data is often not feasible as logs are typically not retained indefinitely and workloads as well as infrastructure changes. In contrast, online methods, which predict task runtimes on specific nodes while the workflow is running, have to cope with the lack of example runs, especially during the start-up. In this paper, we present Lotaru, a novel online method for locally estimating task runtimes in scientific workflows on heterogeneous clusters. Lotaru first profiles all nodes of a cluster with a set of short-running and uniform microbenchmarks. Next, it runs the workflow to be scheduled on the user’s local machine with drastically reduced data to determine important task characteristics. Based on these measurements, Lotaru learns a Bayesian linear regression model to predict a task’s runtime given the input size and finally adjusts the predicted runtime specifically for each task-node pair in the cluster based on the micro-benchmark results. Due to its Bayesian approach, Lotaru can also compute robust uncertainty estimates and provides them as an input for advanced scheduling methods. Our evaluation with five real-world scientific workflows and different datasets shows that Lotaru significantly outperforms the baselines in terms of prediction errors for homogeneous and heterogeneous clusters.

Geoflow - Novel Workflow Implementations To Facilitate Big EO Data Workflows in Nextflow

Projekte

FONDA

FONDA

Grundlagen von Workflows für die Analyse großer naturwissenschaftlicher Daten

Kontakt